Burst Ensemble Multiplexing
Linking dendritic activity to inhibitory microcircuits

Richard Naud
Brain and Mind Research Institute
Department of Cellular and Molecular Medicine
University of Ottawa, Canada
Neocortical Neural Code is Hierarchical

Felleman and van Essen, *Cereb Cortex* (1991)
Gilbert and Li, *Nat Rev Neurosci* (2013)
Synaptic inputs 1 or sensory stimulation

Firing Rate 1
Rate Rate 2
Outline

Introducing Bursting and the Neural Code
Part I: Burst Ensemble Multiplexing
Part II: Information-Limiting Factors in Multiplexing
Part III: Role of Inhibitory Microcircuitry
Hierarchical Codes: A Role for Multiplexing?
PART I

Burst Ensemble Multiplexing
Ensemble Firing Rate

Ensemble

Input (sensory)

Neural Decoding

Membrane Potential

Firing Rate

Knight J Gen Physiol (1972)
Wilson and Cowan Biophys J (1972)
Gerstner Neural Comp (2000)
Tchumatchenko et al., J Neurosci (2011)
Input-derivative encoding

Conjunction of inputs
Burst Ensemble Multiplexing

Firing times

1 Burst

1 Singlet

Events

Firing Rate

Event Rate

Burst Rate

Singlet Rate
Distinct Nature of Inputs to Apical VS Perisomatic

Dendritic
Top-down
(Attention, expectation, top-down partial credit)

Somatic
Sensory - Bottom-up

Deep-layer (L5B) pyramidal cells

Gilbert and Sigman *Neuron* (2007)
Larkum *Trends Neurosci* (2013)
Cortical Microcircuits

Tsodyks and Markram *PNAS* (1998)
Lovett-Baron *Nat Neurosci* (2012)

Gilbert and Li, *Nat Rev Neurosci* (2013)
Bursts of Action Potentials in vivo

In vivo ISI distributions are **bimodal**: Bursts and single spikes

Bursts are **sparse**
Bursts are **short**
Bursts are **stereotypical**

Bursting in L5B cells: BAC-Firing

Deep-layer (L5B) pyramidal cell population

Characterization of Active Dendrites

Two-compartment model fitted on electrophysiological data
- Predicts 85% of spike times
- Morris-Lecar dendritic compartment and LIF soma (+ adaptation)
- Back-propagating action potential and Forward propagating calcium spike

Naud, Bathellier and Gerstner, *Front Comp Neuro* (2014)
Each compartment receives **background noise**

Amplitude of noise **tuned to yield 5 mV** standard deviation

(Polack et al. *Nat Neurosci* 2013)

Background noise **replaces E-I balance** and synaptic bombardment
Simulations of Deep Cortical Cells show Burst Ensemble Multiplexing

Naud & Sprekeler, Submitted
Simulations of Deep Cortical Cells show Burst Ensemble Multiplexing

Deep-layer pyramidal cell population

Naud & Sprekeler, Submitted
A single ensemble of pyramidal neurons can encode two streams of information simultaneously with different spike timing patterns.
PART II

Information Limiting Factors in Multiplexing
Encoding Time-dependent Stimuli

Multiplexing holds for quickly changing inputs up to approximately 40 Hz.
Mutual Information of Firing Rate vs Multiplexing

\[I(A; B) = - \int_0^W \log_2(1 - C(\omega)) d\omega \]

Multiplexing info. \(\sim 420 + 210 = 630 \text{ bits/s} \)
Firing Rate info. \(\sim 300 + 40 = 340 \text{ bits/s} \)

Burst Ensemble Multiplexing

can almost double information rate

Burst Ensemble Multiplexing

is works with larger ensembles

Shannon (1948)
Bialek *et al.* (1991)
Lindner *IEEE* (2016)
Information-Limiting Factors

Bandwidth W

- E_0: Stationary event rate
- F_0: Stationary Burst Probability
- N: Number of neurons in the ensemble
- P_s, P_d: Effective membrane potential input-driven variance
- W: Bandwidth

Number of cells
Renewal Theory and Information Theory

Theoretical Estimates of Information Rate

\[\mathcal{M}_F = W \log_2 \left(1 + NE_0 F_0 (1 - F_0) \frac{P_d}{W} \right) \]

\[\mathcal{M}_E = W \log_2 \left(1 + NE_0 \frac{P_s}{W} \right) \]

- \(E_0 \) Stationary event rate
- \(F_0 \) Stationary Burst Probability
- \(N \) Number of neurons in the ensemble
- \(P_s \) Effective membrane potential
- \(P_d \) input-driven variance
- \(W \) Bandwidth
Theoretical limits to multiplexing

Compare Total Multiplexing Information with Classical firing rate info, \textit{constrained for matched total number of spikes}

\[M_M = M_E + M_F \]

\[M_A = W \log_2 \left(1 + NA_0 \frac{P}{W} \right) \]

\[A_0 = E_0 (1 + nF_0) \]

Sparse and short bursts are optimal

Naud & Sprekeler, Submitted
PART III

Can Neurons Read a Multiplexed Code?
Neural Demixing: Short-Term Plasticity and Cortical Microcircuits

Events

1 Burst

1 Singlet

Pre-syn. Spike pattern

Post-syn. Membrane potential

Short-term Depression STD

Short-term Facilitation STF

VIP +STD

SOM+ -

PV+ -

STF +

STD +
Simulations of Neocortical Networks show Demultiplexing
Simulations of Neocortical Networks show Demultiplexing

Naud & Sprekeler, Submitted
Theoretical limits to multiplexing

Compare Total Multiplexing Information with Classical firing rate info, **constrained for matched total number of spikes**

\[M_M = M_E + M_F \]

\[M_A = W \log_2 \left(1 + N A_0 \frac{P}{W} \right) \]

\[A_0 = E_0 \left(1 + n F_0 \right) \]

Sparse and short bursts are optimal

Naud & Sprekeler, *Submitted*
Martinotti Inhibition can Optimize Multiplexing

1) Feedback dendritic inhibition imposes short and sparse bursts,
2) Multiplexing is preserved when inhibition follows the STF + divisive inhibition motif

som. input at 0, 200, 400 pA

som. input at 0 pA

som. input at 400 pA
Summary

- Properties of active dendrites is consistent with a mechanism for encoding two streams of information simultaneously

- Burst Ensemble Multiplexing is a distinct for time-division multiplexing and frequency division multiplexing

- Short and sparse bursts are optimal for multiplexing

- Decoding of two streams of information is consistent with physiology of inhibitory microcircuits in the cortex
Two-way Vertical Communication

Top-Down Dendritic Input

Event Rate in Higher-Level Ensemble

STF and Divisive Inhibition in Descending Connections

STD in Ascending Connections

Burst Probability in Low-Level Ensemble

Bottom-up Somatic Input

Layer-wise Top-down Multiplication

Top-Down Dendritic Input

Event Rate of Higher-level Ensemble

STF in Descending Connections

STD in Ascending Connections

Burst Probability of Low-Level Ensemble

Bottom-up Somatic Input

STD in Ascending Connections

Burst Probability in Low-Level Ensemble

Bottom-up Somatic Input
Acknowledgments

Neural Coding Lab
Louis Vallée
Zeke Williams
An Duong

Technische Universität Berlin
Bernstein Center for Computational Neuroscience
Henning Sprekeler

We have open Ph.D.
and PostDoc positions!

University of Ottawa
Centre for Neural Dynamics
Jean-Claude Béïque
Simon Chen
Len Maler

Humboldt Universität
Albert Gidon
Filip Vercruysse
Matthew Larkum

Funding
Hypothesis: Burst for Multiplexing
Brain Rhythms and Bursting

Bursting imposes a strong correlation structure, even in the asynchronous state.

Louis Vallée
uOttawa
Burst Ensemble Multiplexing
Cortical Microcircuits

Tsodyks and Markram *PNAS* (1998)
Lovett-Baron *Nat Neurosci* (2012)

Two-compartment model reproduces BAC-firing

Model reproduces
- Spike Timing
- BAC-Firing
- Critical Frequency

Naud, Bathellier and Gerstner, *Front Comp Neuro* (2014)
Rate Coding

Muscle Stretch Neurons in Frog Neck Muscles

1926 Lord Edgar Adrian

Source: backyardbrains.com
Conditions for Information Enhancement